General rightsThis document is made available in accordance with publisher policies. Please cite only the published version using the reference above. The Lorentz gas, a point particle making mirror-like reflections from an extended collection of scatterers, has been a useful model of deterministic diffusion and related statistical properties for over a century. This survey summarises recent results, including periodic and aperiodic models, finite and infinite horizon, external fields, smooth or polygonal obstacles, and in the Boltzmann-Grad limit. New results are given for several moving particles and for obstacles with flat points. Finally, a variety of applications are presented.