Poor-quality maternal diet during pregnancy, and subsequent gestational growth disturbances in the offspring, have been implicated in the etiology of multiple neurodevelopmental disorders, including ADHD, schizophrenia, and autism. These disorders are characterized, in part, by abnormalities in responses to reward and errors of executive function. Here, we demonstrate dissociable deficits in reward processing and executive function in male and female mice, solely due to maternal malnutrition via high-fat or low-protein diets. Gestational exposure to a high-fat diet delayed acquisition of a fixed ratio response, and decreased motivation as assessed by progressive ratio. In contrast, offspring of a low-protein diet displayed no deficits in operant learning, but were more prone to assign salience to a cue that predicts reward (sign-tracking) in a Pavlovian-conditioned approach task. In the 5-choice serial reaction time task (5-CSRTT), gestational exposure to a high-fat diet promoted impulsivity, whereas exposure to a low-protein diet led to marked inattention. These dissociable executive function deficits are known to be mediated by the medial prefrontal cortex (PFC), which displays markers of epigenetic dysregulation in neurodevelopmental disorders. Following behavioral characterization, we assayed PFC gene expression using a targeted PCR array and found that both maternal diets increased overall transcription in PFC. Cluster analysis of the relationships between individual transcripts and behavioral outcomes revealed a cluster of primarily epigenetic modulators, whose overexpression was linked to executive function deficits. The overexpression of four genes, DNA methyltransferase 1 (DNMT1), d-opioid receptor (OPRD1), cannabinoid receptor 1 (CNR1), and catechol-o-methyltransferase (COMT), was strongly associated with overall poor performance. All 5-CSRTT deficits were associated with DNMT1 upregulation, whereas impulsive behavior could be dissociated from inattention by overexpression of OPRD1 or COMT, respectively, as well as a distinct cluster of epigenetic regulators. These data provide molecular support for dissociable domains of executive function.