Abstract:We consider the buckling eigenvalue problem for a clamped plate in the annulus. We identify the first eigenvalue in dependence of the inner radius, and study the number of nodal domains of the corresponding eigenfunctions. Moreover, in order to investigate the asymptotic behavior of eigenvalues and eigenfunctions as the inner radius approaches the outer one, we provide an analytical study of the buckling problem in rectangles with mixed boundary conditions.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.