Background: The current availability of advanced remote sensing technologies in the field of landslide analysis allows for rapid and easily updatable data acquisitions, improving the traditional capabilities of detection, mapping and monitoring, as well as optimizing fieldwork and investigating hazardous or inaccessible areas, while granting at the same time the safety of the operators. Among Earth Observation (EO) techniques in the last decades optical Very High Resolution (VHR) and Synthetic Aperture Radar (SAR) imagery represent very effective tools for these implementations, since very high spatial resolution can be obtained by means of optical systems, and by the new generations of sensors designed for interferometric applications. Although these spaceborne platforms have revisiting times of few days they still cannot match the spatial detail or time resolution achievable by means of Unmanned Aerial Vehicles (UAV) Digital Photogrammetry (DP), and ground-based devices, such as Ground-Based Interferometric SAR (GB-InSAR), Terrestrial Laser Scanning (TLS) and InfraRed Thermography (IRT), which in the recent years have undergone a significant increase of usage, thanks to their technological development and data quality improvement, fast measurement and processing times, portability and cost-effectiveness. In this paper the potential of the abovementioned techniques and the effectiveness of their synergic use is explored in the field of landslide analysis by analyzing various case studies, characterized by different slope instability processes, spatial scales and risk management phases. Results: Spaceborne optical Very High Resolution (VHR) and SAR data were applied at a basin scale for analysing shallow rapid-moving and slow-moving landslides in the emergency management and post-disaster phases, demonstrating their effectiveness for post-disaster damage assessment, landslide detection and rapid mapping, the definition of states of activity and updating of landslide inventory maps. The potential of UAV-DP for very high resolution periodical checks of instability phenomena was explored at a slope-scale in a selected test site; two shallow landslides were detected and characterized, in terms of areal extension, volume and temporal evolution. The combined use of GB-InSAR, TLS and IRT ground based methods, was applied for the surveying, monitoring and characterization of rock slides, unstable cliffs and translational slides. These applications were evaluated in the framework of successful rapid risk scenario evaluation, long term monitoring and emergency management activities. All of the results were validated by means of field surveying activities.