Aim
To understand how liver sinusoidal endothelial cells (LSECs) respond to nonalcoholic steatohepatitis (NASH).
Methods
We profiled single-LSEC from livers of control and MCD-fed mice. The functions of C-Kit+-LSECs were determined using coculture and bone marrow transplantation (BMT) methods.
Results
Three special clusters of single-LSEC were differentiated. C-Kit+-LSECs of cluster 0, Msr1+-LSECs of cluster 1 and Bmp4+Selp+-VECs of cluster 2 were revealed, and these cells with diverse ectopic expressions of genes participated in regulation of endothelial, fibrosis and lipid metabolism in NASH. The number of C-Kit+-primary LSECs isolated from MCD mice was lower than control mice. Immunofluorescence co-staining of CD31 and C-KIT showed C-Kit+-LSECs located in hepatic sinusoid were also reduced in NASH patients and MCD mice, compared to AIH patients and control mice respectively. Interestingly, lipotoxic hepatocytes/HSCs cocultured with C-Kit+-LSECs or the livers of MCD mice receipting of C-Kit+-BMCs (bone marrow cells) showed less steatosis, inflammation and fibrosis, higher expression of prolipolytic FXR and PPAR-α, lower expression of TNF-α and α-SMA. Furthermore, coculturing or BMT of C-Kit+-endothelial derived cells could increase the levels of hepatic mitochondrial LC3B, decrease the degree of mitochondrial damage and ROS production through activating Pink1-mediated mitophagy pathway in NASH.
Conclusions
Hence, a novel transcriptomic view of LSECs was revealed to have heterogeneity and complexity in NASH. Importantly, a cluster of C-Kit+-LSECs was confirmed to recovery Pink1-related mitophagy and NASH progression.