Background: Genome-wide association studies (GWAS) have been widely used to identify phenotype-related genetic variants using many statistical methods, such as logistic and linear regression. However, GWAS-identified SNPs, as identified with stringent statistical significance, explain just a small portion of the overall estimated genetic heritability. To address this 'missing heritability' issue, gene-and pathway-based analysis, and biological mechanisms, have been used for many GWAS studies. However, many of these methods often neglect the correlation between genes and between pathways. Methods: We constructed a hierarchical component model that considers correlations both between genes and between pathways. Based on this model, we propose a novel pathway analysis method for GWAS datasets, Hierarchical structural Component Model for Pathway analysis of Common vAriants (HisCoM-PCA). HisCoM-PCA first summarizes the common variants of each gene, first at the gene-level, and then analyzes all pathways simultaneously by ridge-type penalization of both the gene and pathway effects on the phenotype. Statistical significance of the gene and pathway coefficients can be examined by permutation tests. Results: Using the simulation data set of Genetic Analysis Workshop 17 (GAW17), for both binary and continuous phenotypes, we showed that HisCoM-PCA well-controlled type I error, and had a higher empirical power compared to several other methods. In addition, we applied our method to a SNP chip dataset of KARE for four human physiologic traits: (1) type 2 diabetes; (2) hypertension; (3) systolic blood pressure; and (4) diastolic blood pressure. Those results showed that HisCoM-PCA could successfully identify signal pathways with superior statistical and biological significance. Conclusions: Our approach has the advantage of providing an intuitive biological interpretation for associations between common variants and phenotypes, via pathway information, potentially addressing the missing heritability conundrum.