2023
DOI: 10.1112/plms.12569
|View full text |Cite
|
Sign up to set email alerts
|

The Calkin algebra, Kazhdan's property (T), and strongly self‐absorbing C∗$\mathrm{C}^*$‐algebras

Ilijas Farah

Abstract: It is well known that the relative commutant of every separable nuclear ‐subalgebra of the Calkin algebra has a unital copy of Cuntz algebra . We prove that the Calkin algebra has a separable ‐subalgebra whose relative commutant has no simple, unital, and noncommutative ‐subalgebra. On the other hand, the corona of every stable, separable ‐algebra that tensorially absorbs the Jiang–Su algebra has the property that the relative commutant of every separable ‐subalgebra contains a unital copy of . Analogous resu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 57 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?