Abstract. The Meso-NH Atmospheric Simulation System is a joint e ort of the Centre National de Recherches Me te orologiques and Laboratoire d'Ae rologie. It comprises several elements; a numerical model able to simulate the atmospheric motions, ranging from the large meso-alpha scale down to the micro-scale, with a comprehensive physical package, a¯exible ®le manager, an ensemble of facilities to prepare initial states, either idealized or interpolated from meteorological analyses or forecasts, a¯exible post-processing and graphical facility to visualize the results, and an ensemble of interactive procedures to control these functions. Some of the distinctive features of this ensemble are the following: the model is currently based on the Lipps and Hemler form of the anelastic system, but may evolve towards a more accurate form of the equations system. In the future, it will allow for simultaneous simulation of several scales of motion, by the so-called``interactive grid-nesting technique''. It allows for the in-line computation and accumulation of various terms of the budget of several quantities. It allows for the transport and di usion of passive scalars, to be coupled with a chemical module. It uses the relatively new Fortran 90 compiler. It is tailored to be easily implemented on any UNIX machine. Meso-NH is designed as a research tool for small and meso-scale atmospheric processes. It is freely accessible to the research community, and we have tried to make it as``user-friendly'' as possible, and as general as possible, although these two goals sometimes appear contradictory. The present paper presents a general description of the adiabatic formulation and some of the basic validation simulations. A list of the currently available physical parametrizations and initialization methods is also given. A more precise description of these aspects will be provided in a further paper.