In many information-theoretic channel coding problems, adding an input cost constraint to the operational setup amounts to restricting the optimization domain in the capacity formula. This paper shows that, in contrast to common belief, such a simple modification does not hold for the cost-constrained (CC) wiretap channel (WTC). The secrecy-capacity of the discrete memoryless (DM) WTC without cost constraints is described by a single auxiliary random variable. For the CC DM-WTC, however, we show that two auxiliaries are necessary to achieve capacity. Specifically, we first derive the secrecy-capacity formula, proving the direct part via superposition coding. Then, we provide an example of a CC DM-WTC whose secrecy-capacity cannot be achieved using a single auxiliary. This establishes the fundamental role of superposition coding over CC WTCs.