Complex systems in biology, climatology, medicine, and economy hold emergent properties such as non-linearity, adaptation, and self-organization. These emergent attributes can derive from large-scale relationships, connections, and interactive behavior despite not being apparent from their isolated components. It is possible to better comprehend complex systems by analyzing cross-correlations between time series. However, the accumulation of non-linear processes induces multiscale structures, therefore, a spectrum of power-law exponents (the fractal dimension) and distinct cyclical patterns. We propose the Multifractal Detrended Cross-Correlation Heatmaps (MF-DCCHM), a systematic approach representing a process with clear, defined, and repeatable steps to map the relationships between fluctuations of signals on different time scales and regimes. Our dataset is composed of sales and inventory from the Brazilian automotive sector and macroeconomic descriptors, namely the Gross Domestic Product (GDP) per capita, Nominal Exchange Rate (NER), and the Nominal Interest Rate (NIR) from the Central Bank of Brazil. Our results indicate cross-correlated patterns that can be directly compared with the power-law spectra for multiple regimes. We have also identified cyclical patterns of high intensities that coincide with the Brazilian presidential elections. The MF-DCCHM uncovers non-explicit cyclic patterns, quantifies the relations of two non-stationary signals (noise effect removed), and has outstanding potential for mapping cross-regime patterns in multiple domains.