The short half-life of coagulation factor IX (FIX) for haemophilia B (HB) therapy has been prolonged through fusion with human serum albumin (HSA), which drives the neonatal Fc receptor (FcRn)-mediated recycling of the chimera. However, patients would greatly benefit from further FIX-HSA half-life extension. In the present study, we designed a FIX-HSA variant through the engineering of both fusion partners. First, we developed a novel cleavable linker combining the two FIX activation sites, which resulted in improved HSA release. Second, insertion of the FIX R338L (Padua) substitution conferred hyperactive features (sevenfold higher specific activity) as for FIX Padua alone. Furthermore, we exploited an engineered HSA (QMP), which conferred enhanced human (h)FcRn binding [dissociation constant (K D ) 0Á5 nM] over wild-type FIX-HSA (K D 164Á4 nM). In hFcRn transgenic mice, Padua-QMP displayed a significantly prolonged half-life (2Á7 days, P < 0Á0001) versus FIX-HSA (1 day). Overall, we developed a novel FIX-HSA protein with improved activity and extended half-life. These combined properties may result in a prolonged functional profile above the therapeutic threshold, and thus in a potentially widened therapeutic window able to improve HB therapy. This rational engineering of both partners may pave the way for new fusion strategies for the design of engineered biotherapeutics.