Universities are particularly vulnerable to infectious disease outbreaks and are also ideal environments to study transmission dynamics and evaluate mitigation and surveillance measures when outbreaks occur. Here, we introduce a SARS-CoV-2 surveillance and response framework based on high-resolution, multimodal data collected during the 2020-2021 academic year at Colorado Mesa University. We analyzed epidemiological and sociobehavioral data (demographics, contact tracing, and wifi-based co-location data) alongside pathogen surveillance data (wastewater, random, and reflexive diagnostic testing; and viral genomic sequencing of wastewater and clinical specimens) to characterize outbreak dynamics and inform policy decisions. We quantified group attributes that increased disease risk, and highlighted parallels between traditional and wifi-based contact tracing. We additionally used clinical and environmental viral sequencing to identify cryptic transmission, cluster overdispersion, and novel lineages or mutations. Ultimately, we used distinct data types to identify information that may help shape institutional policy and to develop a model of pathogen surveillance suitable for the future of outbreak preparedness.