2014
DOI: 10.18514/mmn.2014.1046
|View full text |Cite
|
Sign up to set email alerts
|

The Cauchy-Schwarz inequality in Cayley graph and tournament structures on finite fields

Abstract: The Cayley graph construction provides a natural grid structure on a finite vector space over a field of prime or prime square cardinality, where the characteristic is congruent to 3 modulo 4, in addition to the quadratic residue tournament structure on the prime subfield. Distance from the null vector in the grid graph defines a Manhattan norm. The Hermitian inner product on these spaces over finite fields behaves in some respects similarly to the real and complex case. An analogue of the Cauchy-Schwarz inequ… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 3 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?