The communication mechanism of the gut–lung axis has received increasing attention in recent years, particularly in acute respiratory infectious diseases such as influenza. The peripheral immune system serves as a crucial bridge between the gut and the lungs, two organs that are not in close proximity to each other. However, the specific communication mechanism involving gut microbiota, immune cells, and their anti-influenza effects in the lung remains to be further elucidated. In this study, the effects of 731 species of peripheral immune cells and 211 different gut microbiota on influenza outcomes were analyzed using a two-sample Mendelian randomization analysis. After identifying specific species of gut microbiota and peripheral immune cells associated with influenza outcomes, mediation analyses were conducted to determine the mediating effects of specific immune cells in the protective or injurious effects of influenza mediated by gut microbiota. 19 species of gut microbiota and 75 types of peripheral immune cells were identified as being associated with influenza susceptibility. After rigorous screening, 12 combinations were analyzed for mediated effects. Notably, the down-regulation of CD64 on CD14- CD16- cells mediated 21.10% and 18.55% of the protective effect of Alcaligenaceae and Dorea against influenza, respectively. In conclusion, focusing on influenza, this study genetically inferred different types of gut microbiota and peripheral immune cells to determine their protective or risk factors. Furthermore, mediation analysis was used to determine the proportion of mediating effects of peripheral immune cells in gut microbiota-mediated susceptibility to influenza. This helps elucidate the gut–lung axis mechanism by which gut microbiota affects influenza susceptibility from the perspective of regulation of peripheral immune cells.