To examine the role of breast cancer stem cells (BCSCs) in metastasis, we generated human-in-mouse breast cancer orthotopic models using patient tumor specimens, labeled with optical reporter fusion genes. These models recapitulate human cancer features not captured with previous models, including spontaneous metastasis in particular, and provide a useful platform for studies of breast tumor initiation and progression. With noninvasive imaging approaches, as few as 10 cells of stably labeled BCSCs could be tracked in vivo, enabling studies of early tumor growth and spontaneous metastasis. These advances in BCSC imaging revealed that CD44 + cells from both primary tumors and lung metastases are highly enriched for tumor-initiating cells. Our metastatic cancer models, combined with noninvasive imaging techniques, constitute an integrated approach that could be applied to dissect the molecular mechanisms underlying the dissemination of metastatic CSCs (MCSCs) and to explore therapeutic strategies targeting MCSCs in general or to evaluate individual patient tumor cells and predict response to therapy.breast cancer | human-in-mouse cancer models | fused optical reporters | bioluminescence imaging C ancer stem cells (CSCs) were first identified in human leukemia (1, 2) and exhibited capacity to form tumors in immunodeficient mice. Because CSCs are characterized from various types of cancers, CD44 has been a useful marker for enriching CSCs not only for breast tumors but also a variety of other epithelial tumor models (3-17). We and others have previously reported that CSCs are more resistant to traditional cancer therapies (4,18,19). There is circumstantial evidence that CSCs may be involved in metastasis of solid tumors, including breast cancer. Breast CSCs (BCSCs) possess an "invasiveness" gene signature that correlates with poor overall survival and shortened metastasis-free survival in cancer patients (20). Importantly, BCSCs are enriched for cells that can undergo epithelial-mesenchymal cell transition (EMT), which likely plays a critical role in metastases in at least some tumors (21). The observation that microRNAs in normal breast stem cells and BCSCs can regulate both EMT and self-renewal further suggests that CSCs might somehow play a role in metastasis (22). Nonetheless, there remains uncertainty surrounding the contributions of CSCs to metastasis.Understanding the role of CSCs in metastasis requires a reliable, noninvasive measure of BCSC outgrowth and dissemination in representative and predictive models of human metastatic disease. Because of genetic differences in mouse tumors or genetic changes that occur with establishment of cell lines, the commonly used models to study metastases, including those involving human cancer cell lines, mouse tumor models, and/or metastatic tumor models via bloodstream injections, do not fully recapitulate human disease (9,(23)(24)(25). Here, by implanting patient tumors or BCSCs into mouse mammary fat pads and using noninvasive imaging strategies, we established represen...