We use a hybrid N-body program to study the evolution of massive black hole binaries in the centers of galaxies, mainly to understand the factors affecting the binary eccentricity, the response of the galaxy to the binary merger, and the effect of loss-cone depletion on the merger time. The scattering experiments from paper I showed that the merger time is not sensitive to the eccentricity growth unless a binary forms with at least a moderate eccentricity. We find here that the eccentricity can become large under some conditions if a binary forms in a galaxy with a flat core or with a radial bias in its velocity distribution, especially if the dynamical friction is enhanced by resonances as suggested by Rauch and Tremaine (1996). But the necessary conditions all seem unlikely, and our prediction from paper I remains unchanged: in most cases the eccentricity will start and remain small. As a binary hardens it ejects stars from the center of a galaxy, which may explain why large elliptical galaxies have weaker density cusps than smaller galaxies. If so, the central velocity distributions in those galaxies should have strong tangential anisotropies. The wandering of a binary from the center of a galaxy mitigates the problems associated with loss-cone depletion and helps the binary merge.