Background: The optimal approach to detection and management of neonatal hypoglycaemia remains unclear. Objectives: We sought to demonstrate whether electro-encephalography (EEG) changes could be detected on the amplitude-integrated EEG monitor during induced hypoglycaemia in newborn lambs, and also to determine the accuracy of continuously measured interstitial glucose in this situation. Methods: Needle electrodes were placed in the P3-P4, O1-O2 montages. The interstitial glucose sensor was placed subcutaneously. After 30 min baseline recordings, hypoglycaemia was induced by insulin infusion and blood glucose levels were monitored every 5 min. The infusion was adjusted to reduce blood glucose levels by 0.5 mmol/l every 15 min and then maintain a blood glucose level <1.0 mmol/l for 4 h. EEG parameters analysed included amplitude, continuity and spectral edge frequency. The interstitial and blood glucose levels were compared. Results: All lambs (n = 15, aged 3–11 days) became hypoglycaemic, with median blood glucose levels falling from 6.5 to 1.0 mmol/l, p < 0.0001. There were no detectable changes in any of the measured EEG parameters related to hypoglycaemia, although seizures occurred in 2 lambs. There was moderate agreement between the intermittent blood glucose and continuous interstitial glucose measurements in the baseline, decline, and hypoglycaemia periods (mean difference –0.7 mmol/l, 95% confidence interval, CI, –2.8 to 1.4 mmol/l). However, agreement was poor during reversal of hypoglycaemia (mean difference 4.5 mmol/l, 95% CI –1.1 to 10.7 mmol/l). Conclusions: The cot-side EEG may not be a useful clinical tool in the detection of neurological changes induced by hypoglycaemia. However, continuous interstitial glucose monitoring may be useful in the management of babies at risk of hypoglycaemia.