“…The ACO-OFDM framework with N subcarriers is illustrated in Figure 2. In this system, the input bit stream is transformed into complex symbols, S(W), where W ranges from 1 to N 4 , based on the chosen mapper scheme, such as M-QAM [26]. H.S is enforced on the OFDM subcarriers to ensure the real-valued nature of the time-domain signals, as dedicated in Equation (1).…”
Visible Light Communication (VLC) systems are favoured for numerous applications due to their extensive bandwidth and resilience to electromagnetic interference. This study delineates various constructions of Optical Orthogonal Frequency Division Multiplexing (O-OFDM) approaches employed in VLC systems. Various factors are elaborated within this context to ascertain a more effective O-OFDM approach, including constellation size, data arrangement and spectral efficiency, power efficiency, computational complexity, bit error rate (BER), and peak-to-average power ratio (PAPR). This paper seeks to assess these approaches’ BER and PAPR performance across varying modulation orders. Regrettably, in VLC systems based on OFDM methodology, the superposition of multiple subcarriers results in a high PAPR. Therefore, this study aims to diminish the PAPR in VLC systems, enhancing system performance. We propose a non-distorting PAPR reduction technique, namely the Vandermonde-Like Matrix (VLM) precoding technique. The suggested technique is implemented across various O-OFDM approaches, including DCO-OFDM, ADO-OFDM, ACO-OFDM, FLIP-OFDM, ASCO-OFDM, and LACO-OFDM. Notably, this method does not affect the system’s data rate because it does not require the mandatory transmission of side information. Furthermore, this technique can decrease the PAPR without impacting the system’s BER performance. This study compares the proposed PAPR reduction technique against established methods documented in the literature to evaluate their efficacy and validity rigorously.
“…The ACO-OFDM framework with N subcarriers is illustrated in Figure 2. In this system, the input bit stream is transformed into complex symbols, S(W), where W ranges from 1 to N 4 , based on the chosen mapper scheme, such as M-QAM [26]. H.S is enforced on the OFDM subcarriers to ensure the real-valued nature of the time-domain signals, as dedicated in Equation (1).…”
Visible Light Communication (VLC) systems are favoured for numerous applications due to their extensive bandwidth and resilience to electromagnetic interference. This study delineates various constructions of Optical Orthogonal Frequency Division Multiplexing (O-OFDM) approaches employed in VLC systems. Various factors are elaborated within this context to ascertain a more effective O-OFDM approach, including constellation size, data arrangement and spectral efficiency, power efficiency, computational complexity, bit error rate (BER), and peak-to-average power ratio (PAPR). This paper seeks to assess these approaches’ BER and PAPR performance across varying modulation orders. Regrettably, in VLC systems based on OFDM methodology, the superposition of multiple subcarriers results in a high PAPR. Therefore, this study aims to diminish the PAPR in VLC systems, enhancing system performance. We propose a non-distorting PAPR reduction technique, namely the Vandermonde-Like Matrix (VLM) precoding technique. The suggested technique is implemented across various O-OFDM approaches, including DCO-OFDM, ADO-OFDM, ACO-OFDM, FLIP-OFDM, ASCO-OFDM, and LACO-OFDM. Notably, this method does not affect the system’s data rate because it does not require the mandatory transmission of side information. Furthermore, this technique can decrease the PAPR without impacting the system’s BER performance. This study compares the proposed PAPR reduction technique against established methods documented in the literature to evaluate their efficacy and validity rigorously.
One of the primary challenges faced by visible light communication (VLC) systems employing optical orthogonal frequency division multiplexing is the peak-to-average power ratio (PAPR). This study is dedicated to designing, simulating, and evaluating bit error rate (BER) and PAPR reduction methods tailored for the VLC broadcasting system. The asymmetric clipped optical orthogonal frequency division multiplexing (ACO-OFDM) scheme is highlighted in this work for its impressive performance. Therefore, the proposed PAPR mitigation methodologies applied to ACO-OFDM. The proposed PAPR reduction strategy involves 5 distinct precoding methodologies. The PAPR was mitigated by 3.485Â dB after applying the DST precoding methodology. Still, the WHT precoding methodology can achieve PAPR reduction by 1.131Â dB, without BER performance degradation, with respect to the conventional ACO-OFDM system. Furthermore, the work addresses another challenge in VLC systems: the bit error rate (BER). This is accomplished by introducing approaches to Time Domain Noise Cancelation and Frequency Domain Noise Cancelation (FDNC). The BER performance of these 2 receiver models is nearly the same. The simulation results indicate the system performance enhancement after applying noise cancellation approaches by 1.65Â dB at the 4-QAM modulation scheme and 2.97Â dB at the 1024-QAM modulation scheme. The 16-QAM modulation scheme, after applying DST and WHT methodologies alongside noise cancellation approaches, can enhance both PAPR by 20.83% and 6.76%, but the Eb/N0 performance enhancement by 10.10% and 14.64%, respectively. Additionally, the effectiveness and validity of the proposed schemes are verified by comparing them with relevant literature reviews on PAPR reduction techniques and selecting an optimal choice among them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.