A comprehensive study of a pneumonic epizootic was initiated when the first signs of disease were noted in a metapopulation of bighorn sheep inhabiting Hells Canyon, bordering Idaho, Oregon, and Washington. A total of 92 bighorn sheep were tested for etiologic agents during the following 6-mo study period. The study population included bighorn sheep believed to be the subpopulation in which disease was first noted, and these sheep were translocated to a holding facility in an effort to contain the disease (group A1, n = 72); bighorn sheep in other subpopulations (group A2) with evidence of clinical disease were captured, sampled, given antibiotics, and released (n = 8) and those that were found dead were necropsied (n = 12). Samples, including oropharyngeal and nasal swabs, and lung and liver tissue were collected from the bighorn sheep identified above. Tissue was collected at necropsy from 60 group A1 bighorn sheep that died following translocation, and samples were cultured for bacteria and viruses. Blood samples were tested for antibodies against known respiratory viruses, and histopathology was conducted on tissue samples. The major cause of death in both group A1 and group A2 bighorn sheep was a rapidly developing fibrinous bronchopneumonia. Multiple biovariants of Pasteurella were isolated from oropharyngeal and nasal samples from both groups, and Mycoplasma ovipneumonia was isolated from five group A1 oropharyngeal samples. Organisms isolated from lung tissue included Pasteurella multocida multocida a and Pasteurella trehalosi, both of which differentiated into multiple strains by restriction enzyme analysis, and parainfluenza-3 virus (PI-3). Paired serum samples revealed > fourfold increases in titers against PI-3 and bovine respiratory syncytial viruses. It was concluded that this epizootic resulted from a complex of factors including multiple potential respiratory pathogens, none of which were identified as a primary pathogen, and possible stress factors.