The goal of this research is to establish the applicability of an electrostatic measuring technique for monitoring the quality of a coal-milling process in direct-firing systems. Such systems are used in large steam boilers fired with low-rank coal where the pulverized coal is transported pneumatically from the mills to the burner nozzles via ducts with large cross-sections. The electrostatic measuring method, in connection with intrusive rod-type sensors, was studied because it provides good spatial sensitivity and cost effectiveness. A laboratory test rig was constructed, where the pulverized coal carried by ambient air was employed for the experiments emulating the pneumatic transport of coal particles in direct-firing systems. The test rig enables an extensive variation of the most influential parameters, like the mass flow, the velocity and the size of the particles. A linear, multiregression analysis of the results of the experiments was carried out and the appropriate regression model enabling a determination of the mean diameter of the particles using the electrostatic signal was chosen. Based on the results of the study the electrostatic measuring technique can be used for monitoring the size of pneumatically transported particles. The appropriate regression model needs to be chosen for each particular application to describe the dependency of the acquired electrostatic signal on the influential parameters of the pneumatic transport.