We report a new class of building blocks for Dynamic Combinatorial Chemistry (DCC) based on the pyrroloindole scaffold. The attachment of l-cysteine on the α, α′ positions of the core makes the molecule suitable for disulfide exchange in aqueous dynamic combinatorial libraries (DCLs). The synthesis of the core follows a modified version of the Knoevenagel–Hemetsberger approach. The new building block (l-PI) is fluorescent (Φ = 48%) and relatively stable towards thermal and photodegradation. The chirality of the cysteine is transferred to the electron-rich pyrroloindole core. Homo- and heterochiral DCLs of l-PI with electron-deficient l- and d-naphthalenediimide (NDI) lead to similar library distributions regardless of the enantiomer used. When no salt is present, the major component is a dimer, while dimers and tetramers are obtained at increased ionic strength.