Photoluminescence measurements have been conducted for a CdTe/Cd 1−x Mn x Te (x = 0.4) single-quantum-well structure at low temperatures under pressures to 0.49 GPa and magnetic fields to 60 T. At the ambient pressure, a new emission was induced by the application of a magnetic field. The emission has been assigned to exciton emission from the barrier layer, which is suppressed below 9 T due to the energy transfer from the exciton to local d electrons. At 0.49 GPa, the emission recovered at 44 T. In the field region where the energy transfer occurs, an anomalous red-shift of the exciton energy was observed clearly for the case of the ambient pressure. The alloy potential fluctuation effect and the magnetopolaron effect are examined as candidates for the mechanism to cause this phenomenon.