Human red blood cells (RBCs) have a circulatory lifespan of about four months. Under constant oxidative and mechanical stress, but devoid of organelles and deprived of biosynthetic capacity for protein renewal, RBCs undergo substantial homeostatic changes, progressive densification followed by late density reversal among others, changes assumed to have been harnessed by evolution to sustain the rheological competence of the RBCs for as long as possible. The mechanism by which this is achieved is unknown. Each RBC traverses capillaries between 1000 and 2000 times per day, roughly one transit per minute, a total of about 2•10 5 transits during their lifespan. A dedicated Lifespan model of RBC homeostasis was developed as an extension of the RCM introduced in the first paper of this series to explore the cumulative patterns predicted for repetitive capillary transits over a standardized lifespan period of 120 days, using experimental data to constrain the parameter space. Capillary transits were simulated by periods of elevated cell/medium volume ratios and by transient deformation-induced permeability changes attributed to PIEZO1 channel mediation as outlined in the second paper of this series. The first unexpected finding was that quantal changes generated during single capillary transits cease accumulating after a few days and cannot account for the observed progressive densification of RBCs on their own, thus ruling out the quantal hypothesis. The second unexpected finding was that the documented patterns of RBC densification and late reversal could only be emulated by the implementation of a strict time-course of decay in the activities of the calcium and Na/K pumps, but only in addition to the quantal changes. These results showed that both quantal changes and pumpdecay regimes were necessary to account for the documented lifespan pattern, neither sufficient on their own. They also suggested a strong selective component in the pump decay sequence. A third finding was that RBCs exposed to levels of calcium permeation above certain thresholds in the circulation could develop a pattern of late or early hyperdense collapse followed by delayed density reversal. When tested over much reduced lifespan periods the results emulated the known circulatory fate of irreversible sickle cells, the cell subpopulation responsible for vaso-occlusion and for most of the clinical manifestations of sickle cell disease. Analysis of the results provided an insightful new understanding of the mechanisms driving the changes in RBC homeostasis during circulatory aging in health and disease.
Methods
Open access to the Lifespan model:As for the core RCM model (2, 3), the Lifespan model, Lifespan*.jar, is available for downloading from the GitHub repository https://github.com/sdrogers/redcellmodeljava. The model operates as a *.jar programme within the JAVA environment which needs to be preinstalled. It is recommended not to alter the original file name as it contains coded information on date and update status. Altered names are best app...