1986
DOI: 10.1007/bf01230621
|View full text |Cite
|
Sign up to set email alerts
|

The class of Kleene algebras satisfying an interpolation property and Nelson algebras

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

3
88
0

Year Published

2010
2010
2020
2020

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 72 publications
(91 citation statements)
references
References 15 publications
3
88
0
Order By: Relevance
“…Due to this reason we have to find a rather complicated formula for the weak implication. However, the resulting duality theory for N4 ⊥ -lattices agrees very well with the duality theory developed by R. Cignioli [1] and A. Sendlewski [18].…”
Section: Introductionsupporting
confidence: 66%
See 2 more Smart Citations
“…Due to this reason we have to find a rather complicated formula for the weak implication. However, the resulting duality theory for N4 ⊥ -lattices agrees very well with the duality theory developed by R. Cignioli [1] and A. Sendlewski [18].…”
Section: Introductionsupporting
confidence: 66%
“…Both Sendlewski [18] and Cignioli [1] used the technique of Priestley to obtain the representation of N3-lattices as Heyting algebras with distinguished filter [18] and to prove that the congruence lattice of N3-lattice is isomorphic to the congruence lattice of the underlying Heyting algebra. In [10], the generalizations of both results to N4-lattices was obtained via a direct algebraic proof, but this generalization and finding out a simple proof would be impossible without results on N3-lattices obtained with the help of Priestley duality.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The semantics is given by Nelson algebras (Cignoli, 1986), that is Kleene algebras where a further implication a → N b = a → G (¬a b) always exists for any a, b and it satisfies (a ∧ b)…”
Section: Nelson Logicmentioning
confidence: 99%
“…• BZMV dM algebras, a pasting of MV algebras and BZ lattices [Cattaneo et al(1999)Cattaneo, Giuntini, an On Table 4, we can see that among the 14 implications we also have the Kleene, the Gaines-Rescher, the Nelson [Vakarelov(1977), Cignoli(1986) Remark 3. In his study on invariant fuzzy implications [Drewniak(2006)], Drewniak points out 18 implications which are minimal "invariant with respect to the family of bijections".…”
Section: Remark 1 Other Definitions Of Conjunctionmentioning
confidence: 99%