The diagnosis of syphilis can be complicated when it is based on diverse clinical manifestations, dark-field microscopy, and serology. In the present study, therefore, we examined the additional clinical value of a Treponema pallidum real-time TaqMan PCR for the detection of primary and secondary syphilis. The additional value of the T. pallidum real-time PCR for the diagnosis of primary syphilis was evaluated by the use of three different algorithms: (i) a head-to-head comparison of the dark-field microscopy result and the T. pallidum real-time PCR result, (ii) comparison of the clinical diagnosis made in a sexually transmitted infection clinic (STI) (including by dark-field microscopy) and the T. pallidum real-time PCR result, and (iii) comparison of the clinical diagnosis made in a general practitioner's office (without dark-field microscopy) and the T. pallidum real-time PCR result. A fourth algorithm was used to determine the performance of the T. pallidum real-time PCR regarding the detection of secondary syphilis. From December 2006 to April 2008, 716 patients with suspected cases of primary syphilis and 133 patients with suspected cases of secondary syphilis were included in the study. A kappa value of 0.601 was found for the agreement between dark-field microscopy and the T. pallidum real-time PCR. Good agreement was found between the T. pallidum real-time PCR and both the diagnosis of the general practitioner (kappa ؍ 0.745) and the diagnosis of the STI clinic (kappa ؍ 0.769). The sensitivity with respect to the STI clinic diagnosis was 72.8%, the specificity was 95.5%, the positive predictive value was 89.2%, and the negative predictive value was 95.0%. The T. pallidum real-time PCR is a fast, efficient, and reliable test for the diagnosis of primary syphilis in an STI outpatient clinic and a general practitioner setting, but it has no added diagnostic value for the diagnosis of secondary syphilis.The etiologic agent of syphilis, Treponema pallidum subsp. pallidum, causes a multistage sexually transmitted infection (STI). During the last decade, there has been an increase in the reported incidence of syphilis in industrialized countries, emphasizing the need for reliable diagnostics for syphilis.The slow generation time and the inability to survive and multiply outside the mammalian body make T. pallidum unsuitable for in vitro culturing (11). The reliable and fast diagnosis of syphilis and early treatment could improve public health. Until recently, the laboratory diagnosis of syphilis was based on dark-field microscopy and/or syphilis serology. Darkfield microscopy is mainly used for the diagnosis of primary syphilis. For optimal interpretation of the test result, dark-field microscopy requires the laboratory technician performing the microscopy to have a great deal of experience and expertise. In many settings in which patients with (ano)genital ulceration are seen, such as the office of a general practitioner (GP), dark-field microscopy is not available and a definite diagnosis of syphilis dep...