Self-supporting films and thick-walled moldings (blades) were obtained from solutions and melts of multiblock (segmental) copoly(urethane-imides). The initial copoly(urethane-imides) were obtained on the basis of aliphatic polyesters: poly(propyleneglycol), poly(diethyleneglycoladipinate) and polycaprolactone, dianhydride of 1,3-bis(3’,4-dicarboxyphenoxy) benzene and aromatic diamines: 4,4’-bis-(4”-aminophenoxy)biphenyl and 1,4-bis(4’-aminophenoxy)diphenylsulfone. Samples of films and moldings were studied by IR spectroscopy, TGA, DSC and mechanical analysis under static and dynamic (DMA) experimental conditions. It is assumed that the diff erences in the properties of films and moldings are due to an increase in the proportion of aromatic blocks due to microdestruction of polymer chains and increased interfacial interactions of polyester and urethanimide microphases (blocks) in polymer systems during the processing of polymers from the melt by injection molding.