The transport of metabolites, coenzymes, and ions across the mitochondrial inner membrane is still poorly understood. In most cases, membrane transport is facilitated by the so-called mitochondrial carrier proteins. The yeast Saccharomyces cerevisiae contains 35 members of the carrier family, but a function has been identified for only 13 proteins. Here, we investigated the yeast carrier Leu5p (encoded by the gene YHR002w) and its close human homologue Graves' disease protein. Leu5p is inserted into the mitochondrial inner membrane along the specialized import pathway used by carrier proteins. Deletion of LEU5 (strain ⌬leu5) was accompanied by a 15-fold reduction of mitochondrial coenzyme A (CoA) levels but did not affect the cytosolic CoA content. As a consequence, the activities of several mitochondrial CoA-dependent enzymes were strongly decreased in ⌬leu5 cells. Our in vitro and in vivo analyses assign a function to Leu5p in the accumulation of CoA in mitochondria, presumably by serving as a transporter of CoA or a precursor thereof. Expression of the Graves' disease protein in ⌬leu5 cells can replace the function of Leu5p, demonstrating that the human protein represents the orthologue of yeast Leu5p. The function of the human protein might not be directly linked to the disease, as antisera derived from patients with active Graves' disease do not recognize the protein after expression in yeast, suggesting that it does not represent a major autoantigen. The two carrier proteins characterized herein are the first components for which a role in the subcellular distribution of CoA has been identified.Mitochondria perform a variety of processes, such as oxidative phosphorylation, the citric acid cycle, the -oxidation of fatty acids, parts of the urea cycle, and the biosynthesis of heme and certain amino acids (13,14,61). The metabolic activity of mitochondria requires the rapid and highly specific exchange of molecules between the cytosol and the mitochondrial matrix space. To a large extent, this is facilitated by a family of transport proteins of the inner membrane, the so-called mitochondrial carrier proteins (for reviews, see references 20, 22, 31, 44, 45, and 67). Members of this family include proteins responsible for the exchange of ADP and ATP (termed AAC or ANT) and for the transport of, e.g., phosphate, citrate, carnitine, dicarboxylates, amino acids, flavin adenine dinucleotide (FAD), or protons. The biogenesis of carriers differs in various aspects from that of most other mitochondrial proteins (reviewed in references 2, 32, and 60). They lack an N-terminal targeting sequence (presequence) and they follow a unique import pathway involving the interaction with specialized import components in the outer membrane (Tom70), the intermembrane space (Tim8, Tim9, Tim10, Tim12, and Tim13), and the inner membrane (Tim18, Tim22, and Tim54).In their transport-competent form, carrier proteins are dimeric (50). Each monomer is comprised of three homologous modules containing two transmembrane segments each. Both ...