The MYB transcription factor family is one of the largest families of plant transcription factors (TFs), and it plays a vital role in the entire process of a plant’s growth and development. Well known in China, Eucommia ulmoides (E. ulmoides) produces a form of natural rubber called Eucommia ulmoides gum (EUG). Nevertheless, there is little research on the evolutionary history and expression patterns of its MYBs, as well as on the regulation of EUG by MYB TFs. This research provides a comprehensive description, classification, and potential functional analysis of the EuMYB gene family. A total of 119 MYB members of E. ulmoides were identified based on the whole genome sequencing data, and their gene structure, phylogenetics, chromosome location, conserved motifs, etc., were analyzed. Based on the phylogenetic tree results, EuMYBs could be divided into 35 sub-groups. In addition, chromosomal localization and collinearity analysis revealed the heterogeneous distribution of the MYB family in the E. ulmoides’ genome, indicating the expansion of its gene family. Moreover, promoter cis-acting elements showed that the promoter contained abundant light-responsive elements, anaerobic-induction-responsive elements, and abscisic-acid-responsive elements. A co-expression regulatory network between the EUG biosynthesis genes and the EuMYBs was built. Meanwhile, regarding the six EuMYBs with high expression in the gum-forming tissues selected that correlated with the farnesyl diphosphate synthase (FPS1) structural gene, RT-qPCR experiments showed a possible regulatory relationship between EuMYBs and FPS1, which played an important role in EUG biosynthesis. In conclusion, this paper defines a research gap and lays a foundation for further studies on the biological functions of EuMYBs.