IntroductionIn the era of precision medicine, research studies are aiming to design patient-tailored treatment strategies. In this work, we present a clinical case of a patient with non-small cell lung cancer (NSCLC) accompanied by a translational study with the intent to assess the correspondence of drug sensitivity in ex vivo spheroidal tumour cultures and peripheral blood biomarkers with clinical outcome.MethodsPrimary tumour tissue, patient-derived tumour spheroids, peripheral blood mononuclear cells and circulating DNA were analysed to assess drug sensitivity and immunological profiling, and all these data were correlated with clinical and radiological evaluations.ResultsImmunohistochemistry, immunofluorescence, next generation sequencing analysis and T-lymphocyte receptor repertoire assay results showed elevated concordance among primary tumour tissue, ex vivo three-dimensional tumour spheroid specimen and circulating DNA. Cisplatin-based chemotherapy and anti-programmed death 1 drug sensitivity assessed in spheroidal cultures were strictly consistent with patient clinical response to adjuvant chemotherapy and first-line immune therapy.ConclusionThese results revealed that ex vivo drug sensitivity testing in three-dimensional spheroidal culture can reproduce clinical response to chemotherapy and immunotherapy, with the potential to use those culture models to predict patients‘ outcome from anticancer treatments and, therefore, the feasibility to select individualised therapy.