Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper presents the methodology developed for underwater measurements using electrochemical impedance spectroscopy (EIS) technique, aimed at determining the resistance of an epoxy coating applied in seawater to the legs of an oil production platform. Performing such underwater tests in an offshore environment was technically challenging. The results of measurements obtained on the platform were confronted with comparative results obtained in the laboratory, where the properties of the coating applied in water collected from the Baltic Sea (thickness, hardness, adhesion, and electrical resistance) were examined. This made it possible to conclude about the correctness of the paint coating application by divers on the legs of the platform. The single-layer epoxy coating applied by brush to the platform legs had a resistance above 10 kΩ∙cm2 and thus met the assumed minimum resistance of the protective coating cooperating with cathodic protection as the anti-corrosion protection system of the platform legs. The synergy of these two technologies ensures full protection of offshore structures against corrosion. Measurements of the potential of the platform legs confirmed this. Before painting, the potential value at a depth of 0–15 m was 310 ÷ 320 mV versus the zinc reference electrode, while after painting the potential value decreased to 220 ÷ 240 mV, which means that the effect of full cathodic protection was achieved and the platform legs were protected from corrosion. The developed methodology for underwater EIS measurements on the high seas can be applied to any underwater metal structure to assess the quality of protective coatings.
This paper presents the methodology developed for underwater measurements using electrochemical impedance spectroscopy (EIS) technique, aimed at determining the resistance of an epoxy coating applied in seawater to the legs of an oil production platform. Performing such underwater tests in an offshore environment was technically challenging. The results of measurements obtained on the platform were confronted with comparative results obtained in the laboratory, where the properties of the coating applied in water collected from the Baltic Sea (thickness, hardness, adhesion, and electrical resistance) were examined. This made it possible to conclude about the correctness of the paint coating application by divers on the legs of the platform. The single-layer epoxy coating applied by brush to the platform legs had a resistance above 10 kΩ∙cm2 and thus met the assumed minimum resistance of the protective coating cooperating with cathodic protection as the anti-corrosion protection system of the platform legs. The synergy of these two technologies ensures full protection of offshore structures against corrosion. Measurements of the potential of the platform legs confirmed this. Before painting, the potential value at a depth of 0–15 m was 310 ÷ 320 mV versus the zinc reference electrode, while after painting the potential value decreased to 220 ÷ 240 mV, which means that the effect of full cathodic protection was achieved and the platform legs were protected from corrosion. The developed methodology for underwater EIS measurements on the high seas can be applied to any underwater metal structure to assess the quality of protective coatings.
The application of organic coatings is the most cost-effective and common method for metallic equipment toward corrosion, whose anti-corrosion property needs to be improved and evaluated in a short time. To rapidly and rationally assess the anti-corrosion property of organic coatings in the ocean splash zone, a new accelerated test was proposed. In the study, the corrosion protection property of the coating samples was measured by an improved AC-DC-AC test in a simulated seawater of 3.5 wt.% NaCl solution, a simulated ocean splash zone test and a new accelerated test combining the above two tests. The results showed that the corrosion rate of the coating samples was high in the improved AC-DC-AC test, which lost its anti-corrosion property after 24 cycles equal to 96 h. The main rapid failure reason was that the time of the water and corrosive media arriving at the carbon steel substrate under the alternating cathodic and anodic polarization with symmetrical positive and negative electric charges was shortened. The entire impedance of the coating samples was improved by about 1.6 times more than that in the initial early time in the simulated ocean splash zone test, which was caused by the damage effect from the salt spraying, drying, humidifying, salt immersion, high temperature and UVA irradiation being weaker than the enhancement effect from the post-curing process by the UVA irradiation. In the new accelerated test, the samples lost their corrosion resistance after 12 cycles equal to 288 h with the fastest failure rate. On account of the coupling process of the salt spraying, drying, humidifying, salt immersion, high temperature combined with the cathodic and anodic polarization and the UVA irradiation, the penetration and transmission rate of water and corrosive media in the coating were further accelerated, the corrosion rate on the carbon steel substrate was reinforced even larger and the destruction of the top polymer molecules was more serious. The new accelerated test showed the strongest damage-acceleration effect than that in the other two tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.