2018
DOI: 10.5815/ijisa.2018.09.05
|View full text |Cite
|
Sign up to set email alerts
|

The Combined Use of the Wiener Polynomial and SVM for Material Classification Task in Medical Implants Production

Abstract: This document presents two developed methods for solving the classification task of medical implant materials based on the compatible use of the Wiener Polynomial and SVM. The high accuracy of the proposed methodology for solving this task are experimentally confirmed. A comparison of the proposed methods with existing ones: Logistic Regression; Linear SVC; Random Forest; SVC (linear kernel); SVC (RBF kernel); Random Forest + Wiener Polynomial is carried out. The duration of training of all methods that descri… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
21
0
3

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
4
1

Relationship

1
9

Authors

Journals

citations
Cited by 52 publications
(24 citation statements)
references
References 22 publications
0
21
0
3
Order By: Relevance
“…-recall [35]; -precision [36]; -average precision [37]; -precision at the level of 5 content articles [38]; -precision at the level of 10 content articles [39]; -R-precision [40]; -11-point matrix (TREC) [41]; -modified 11-point matrix (RIRES) [42]. To categorize information-retrieval systems, most often used are recall, precision, accuracy, error, and F-measure [43].…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
“…-recall [35]; -precision [36]; -average precision [37]; -precision at the level of 5 content articles [38]; -precision at the level of 10 content articles [39]; -R-precision [40]; -11-point matrix (TREC) [41]; -modified 11-point matrix (RIRES) [42]. To categorize information-retrieval systems, most often used are recall, precision, accuracy, error, and F-measure [43].…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
“…Finally, we analyze different works focused on the use of machine learning algorithms. In [17], I. Izonin presents two methods for solving the classification task of medical implant materials based on the compatible use of the Wiener polynomial and SVMs. The author compares the proposed methods with existing algorithms.…”
Section: Related Workmentioning
confidence: 99%
“…Для роботи з полімерами найчастіше використовують технології на основі екструзії, пошарового наплавлення, селективного лазерного спікання, струменевого друку. Працюючи з металевими біоматеріалами, застосовують спікання шару порошку, селективне лазерне або електронно-променеве плавлення [11,12]; для керамічних матеріалів доцільно використовувати розбризкування сполучної речовини, екструзію матеріалу, спікання шару порошку та полімеризацію у ванні [13,14]. Це вимагає розвитку в дослідженнях технології побудови тривимірних моделей [15,16].…”
Section: рис 1 сучасні методи адитивних технологійunclassified