Causal set theory is a promising attempt to model fundamental spacetime structure in a discrete order-theoretic context via sets equipped with special binary relations, called causal sets. The elements of a causal set are taken to represent spacetime events, while its binary relation is taken to encode causal relations between pairs of events. Causal set theory was introduced in 1987 by Bombelli, Lee, Meyer, and Sorkin, motivated by results of Hawking and Malament relating the causal, conformal, and metric structures of relativistic spacetime, together with earlier work on discrete causal theory by Finkelstein, Myrheim, and 't Hooft. Sorkin has coined the phrase, "order plus number equals geometry," to summarize the causal set viewpoint regarding the roles of causal structure and discreteness in the emergence of spacetime geometry. This phrase represents a specific version of what I refer to as the causal metric hypothesis, which is the idea that the properties of the physical universe, and in particular, the metric properties of classical spacetime, arise from causal structure at the fundamental scale.Causal set theory may be expressed in terms of six axioms: the binary axiom, the measure axiom, countability, transitivity, interval finiteness, and irreflexivity. The first three axioms, which fix the physical interpretation of a causal set, and restrict its "size," appear in the literature either implicitly, or as part of the preliminary definition of a causal set. The last three axioms, which encode the essential mathematical structure of a causal set, appear in the literature as the irreflexive formulation of causal set theory. Together, these axioms represent a straightforward adaptation of familiar notions of causality to the discrete order-theoretic context. Interval finiteness is often called local finiteness in the literature, an unfortunate misnomer.