Abstract
Background.The prevalence of metabolic syndrome continues to rise sharply worldwide, seriously threatening people's health. The optimal model can be used to identify people at high risk of metabolic syndrome as early as possible, to predict their risk, and to persuade them to change their adverse lifestyle so as to slow down and reduce the incidence of metabolic syndrome.Objective.To develop and internally verify three risk prediction models for the metabolic syndrome of petroleum workers, compare the prediction performance of the three models, and find the optimal model.Methods. Design existing circumstances research. A total of 1,468 workers from an oil company who participated in occupational health physical examination from April 2017 to October 2018 were included in this study. We established the Logistic regression model, the random forest model and the convolutional neural network model, and compared the prediction performance of the models according to the F1 score, sensitivity, accuracy and other indicators of the three models.Results.The results showed that the accuracy of the three models in the training set was 83.45%, 94.21% and 86.34%, the sensitivity was 78.47%, 94.62% and 81.30%, the F1 score was 0.79, 0.93 and 0.83, the area under the ROC curve was 0.894, 0.987 and 0.935, and the Integrated Calibration Index was 0.074, 0.071 and 0.078, respectively. In the test set, the accuracy was 76.72%, 80.66% and 78.69%, the sensitivity was 70.00%, 77.50% and 68.33%, the F1 score was 0.70, 0.76 and 0.71, the area under the ROC curve was 0.797, 0.861 and 0.855, and the Integrated Calibration Index was 0.064, 0.051 and 0.096, respectively.Conclusions.The study showed that the prediction performance of random forest model is better than other models, and the model has higher application value, which can better predict the risk of metabolic syndrome in oil workers, and provide corresponding theoretical basis for the health management of oil workers.