Background: Veratrum is a genus of perennial herbs that are widely used as traditional Chinese medicine for emetic, resolving blood stasis and relieve pain. However, the species classification and the phylogenetic relationship of the genus Veratrum have long been controversial due to the complexity of morphological variations. Knowledge on the infrageneric relationships of the genus Veratrum can be obtained from their chloroplast genome sequences and increase the taxonomic and phylogenetic resolution.Methods: Total DNA was extracted from ten species of Veratrum and subjected to next-generation sequencing. The cp genome was assembled by NOVOPlasty. Genome annotation was conducted using the online tool DOGMA and subsequently corrected by Geneious Prime. Then, genomic characterization of the Veratrum plastome and genome comparison with closely related species was analyzed by corresponding software. Moreover, phylogenetical trees were reconstructed, based on the 29 plastomes by maximum likelihood (ML) and Bayesian inference (BI) methods.Results: The whole plastomes of Veratrum species possess a typical quadripartite structure, ranging from 151,597 bp to 153,711 bp in size and comprising 135 genes. The gene order, content, and genome structure were nearly identical with a few exceptions across the Veratrum chloroplast genomes. The total number of simple sequence repeats (SSRs) ranged from 31 to 35, and of large sequence repeats (LSRs) ranged from 65 to 71. Seven highly divergent regions (rpoB-trnC, trnT-trnL, trnS-trnG, psbC-psbZ, psbI, ycf1, and ndhF) were identified that can be used for DNA barcoding in the genus of Veratrum. Phylogenetic analyses based on 29 plastomes strongly supported the monophyly of Veratrum. The circumscription and relationships of infrageneric taxa of Veratrum were well evaluated with high resolutions. Conclusions: Our study identified and analyzed the cp genome features of ten Veratrum species, and suggested high effectivity of chloroplast complete genome in resolving generic circumscription in Veratrum. These results will facilitate the identification, taxonomy, and utilization of Veratrum plants as well as the phylogenetic study of Melanthiaceae simultaneously.