Bat groups have a high degree of species diversity, and the taxonomic status and phylogenetic relationships among bat species have always been research hotspots. Due to the fact that morphological characteristics do not always reflect the evolutionary relationships among species, mitochondrial DNA has been widely used in the study of species relationships due to its maternal inheritance pattern. Myotis aurascens has been suggested as a possible synonym for M. davidii. However, the status of this classification has been controversial. In this study, the morphological and molecular characteristics of a M. aurascens captured from Inner Mongolia, China, were analyzed to determine its taxonomic status. In terms of morphological features, the body weight was 6.33 g, the head and body length were 45.10 mm, the forearm length was 35.87 mm, and the tragus length was 7.51 mm. These values all fell within the species signature data range. Nucleotide skew analysis of the protein-coding genes (PCGs) suggested that only five PCGs (ND1, ND2, COX2, ATP8, and ND4) showed AT-skew value within the mitogenome of M. aurascens. Except for ND6, the GC-skew values of the other PCGs were negative, reflecting the preference for C and T bases compared to G and A bases. Molecular phylogenetic analyses based on mitochondrial PCGs indicated that M. aurascens was a distinct species from M. davidii and phylogenetically closer to M. ikonnikovi, M. alcathoe, and M. mystacinus. Genetic distance analysis also showed that M. aurascens and M. davidii were distantly related. Therefore, the integrated analysis demonstrated that M. aurascens should be considered a distinct species rather than a synonym of M. davidii. Our study could provide a reference for enriching species diversity and research on conservation in China.