The world is suffering from chronic water shortage due to the increasing population, water pollution and industrialization. Desalinating saline water offers a rational choice to produce fresh water thus resolving the crisis. Among various kinds of desalination technologies, capacitive deionization (CDI) is of significant potential owing to the facile process, low energy consumption, mild working conditions, easy regeneration, low cost and the absence of secondary pollution. The electrode material is an essential component for desalination performance. The most used electrode material is carbon-based material, which suffers from low desalination capacity (under 15 mg·g−1). However, the desalination of saline water with the CDI method is usually the charging process of a battery or supercapacitor. The electrochemical capacity of battery electrode material is relatively high because of the larger scale of charge transfer due to the redox reaction, thus leading to a larger desalination capacity in the CDI system. A variety of battery materials have been developed due to the urgent demand for energy storage, which increases the choices of CDI electrode materials largely. Sodium-ion battery materials, lithium-ion battery materials, chloride-ion battery materials, conducting polymers, radical polymers, and flow battery electrode materials have appeared in the literature of CDI research, many of which enhanced the deionization performances of CDI, revealing a bright future of integrating battery materials with CDI technology.