Background: Chronic intestinal inflammation due to noninfectious causes represents a growing health issue all over the world. Celiac disease as well as inflammatory bowel diseases (IBD) like Crohn's disease and ulcerative and microscopic colitis involve uncontrolled T-cell activation and T-cell-mediated damage as common denominators. Therefore, diagnosis and treatment decisions clearly benefit from the knowledge of the intricacies of the systemic and the local T-cell activity. Summary: Depending on the cytokine milieu, CD4+ T cells can differentiate into proinflammatory T helper 1 (Th1), anti-inflammatory Th2, antimicrobial Th17, pleiotropic Th9, tissue-instructing Th22 cells, and in the regulatory compartment forkhead box protein 3+ Treg, suppressive Tr1 or Th3 cells. Additionally, follicular Th cells provide B-cell help in antibody class switching; cytotoxic CD8+ T cells target virus-infected or tumor cells. This review discusses our current knowledge on the contribution of defined T-cell subpopulations to establishing and maintaining chronic intestinal inflammation in either of the above entities. It also puts emphasis on the differences in the prevalence of these diseases between Eastern and Western countries. Key Messages: In celiac disease, the driving role of T cells in the lamina propria and in the epithelium mainly specific for two defined antigens is well established. Differences in genetics and lifestyle between Western and Eastern countries were instrumental in understanding underlying mechanisms. In IBD, the vast amount of potential antigens and the corresponding antigen-specific T cells makes it unlikely to find universal triggers. Increased mucosal CD4+ regulatory T cells in all four entities fail to control or abrogate local inflammatory processes. Thus, prevailing differences in the functional T-cell subtypes driving chronic intestinal inflammation in celiac disease and IBD at best allow some overlap in the treatment options for either disease.