2021
DOI: 10.48550/arxiv.2108.00369
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

The composition series of ideals of the partial-isometric crossed product by the semigroup $\mathbb{N}^{2}$

Abstract: Suppose that N 2 is the positive cone of the abelian lattice-ordered group Z 2 , and α an action of N 2 by extendible endomorphisms of a C * -algebra A. Let A × piso α N 2 be the partial-isometric crossed product by the endomorphic action α. A composition series 0 ≤ L 1 ≤ L 2 ≤ A × piso α N 2 of essential ideals is obtained for which we identify the subquotients with familiar algebras.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?