Abstract:The decomposition of a quasi-abelian code into shorter linear codes over larger alphabets was given in (Jitman, Ling, ( 2015)), extending the analogous Chinese remainder decomposition of quasi-cyclic codes (Ling, Solé, ( 2001)). We give a concatenated decomposition of quasi-abelian codes and show, as in the quasi-cyclic case, that the two decompositions are equivalent. The concatenated decomposition allows us to give a general minimum distance bound for quasi-abelian codes and to construct some optimal codes. … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.