Abstract. Recent studies have indicated that magnetic resonance imaging (MRI) efficiently diagnoses lung cancer. However, the efficacy of MRI in diagnosing lung cancer requires improving for patients in the early stage of the disease. In the present study, a novel nano-sized contrast agent of chistosan/Fe 3 O 4 -enclosed bispecific antibodies (BsAbCENS) was introduced, which targeted carcino-embryonic antigen (CEA) and neuron-specific enolase (NSE) in lung cancer cells. The diagnostic efficacy of contrast-enhanced MRI with BsAbCENS (CEMRI-BsAbCENS) was investigated in a total of 182 patients with suspected lung cancer who had high serum levels of CEA and NSE. BsAbCENS was administered by pulmonary inhalation prior to the MRI scan. The results revealed that CEA and NSE were overexpressed in human lung cancer cell lines. BsAbCENS bound with CEA and NSE on the surface of human lung cancer cells and produced a higher signal intensity than MRI alone for the diagnosis of patients with lung cancer. The diagnostic data revealed that CEMRI-BsAbCENS diagnosed 124/182 lung cancer cases, whereas CEMRI only diagnosed 98/182, which was significantly less (P<0.01). In addition, the survival rate of patients with lung cancer diagnosed by CEMRI-BsAbCENS was significantly higher than the mean 5-year survival rate (P<0.01). Furthermore, the pharmacodynamics demonstrated that BsAbCENS was metabolized within 24 h. The results of the present study indicate that the efficacy and accuracy of lung cancer diagnosis are improved by CEMRI-BsAbCENS. In conclusion, these results provide a potential novel protocol for the diagnosis of tumors in patients with suspected early stage lung cancer.