“…and use it to provide another proof of the unboundedness of γ 4 by demonstrating that γ 4 (# n T (3,4) ) ≥ n, where # n T (3,4) is the n-fold connected sum of the (3, 4) torus knot T (3,4) with itself. The converse inequality γ 4 (# n T (3,4) ) ≤ n is easy to verify by finding an explicit Möbius band bounded by T (3,4) , leading to γ 4 (# n T (3,4) ) = n. γ 4 (K) = 1 for K = 9 1 , 9 3 , 9 4 , 9 5 , 9 6 , 9 7 , 9 8 , 9 9 , 9 13 , 9 15 , 9 17 , 9 19 , 9 21 , 9 22 , 9 23 , 9 25 , 9 26 , 9 27 , 9 28 , 9 29 , 9 31 , 9 32 , 9 35 , 9 36 , 9 41 , 9 42 , 9 43 , 9 44 , 9 45 , 9 46 , , 9 47 , 9 48 . γ 4 (K) = 2 for K = 9 2 , 9 10 , 9 11 , 9 12 , 9 14 , 9 16 , 9 18 , 9 20 , 9 24 , 9 30 , 9 33 , 9 34 , 9 37 , 9 38 , 9 39 , 9 40 , 9 49 .…”