Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Compartmentalization of the nucleus into heterochromatin and euchromatin is highly conserved across eukaryotes. Constitutive heterochromatin (C-Het) constitutes a liquid-like condensate that packages the repetitive regions of the genome through the enrichment of histone modification H3K9me3 and recruitment of its cognate reader protein Heterochromatin Protein-1 (HP1a). The ability for well-ordered nucleosome arrays and HP1a to independently form biomolecular condensates suggests that the emergent material properties of C-Het compartments may contribute to its functions such as force-buffering, dosage-dependent gene silencing, and selective permeability. Using an in vitro reconstitution system we directly assess the contributions of H3K9me3 and HP1a on the biophysical properties of C-Het. In the presence of HP1a, H3K9me3 (Me-) and unmodified (U-) chromatin form co-condensates composed of distinct, immiscible domains. These chromatin domains form spontaneously and are reversible. Independently of HP1a, H3K9me3 modifications are sufficient to increase linker-DNA length within chromatin arrays and slow chromatin condensate growth. HP1a increases the liquidity of chromatin condensates while dramatically differentiating the viscoelastic properties of Me- chromatin versus U-chromatin. Mutating key residues in HP1a show that HP1a interactions with itself and chromatin determine the relative interfacial tension between chromatin compartments, however the formation of condensates is driven by the underlying chromatin. These direct measurements map the energetic landscape that determines C-Het compartmentalization, demonstrating that nuclear compartmentalization is a spontaneous and energetically favorable process in which HP1a plays a critical role in establishing a hierarchy of affinities between H3K9me3-chromatin and unmodified-chromatin.
Compartmentalization of the nucleus into heterochromatin and euchromatin is highly conserved across eukaryotes. Constitutive heterochromatin (C-Het) constitutes a liquid-like condensate that packages the repetitive regions of the genome through the enrichment of histone modification H3K9me3 and recruitment of its cognate reader protein Heterochromatin Protein-1 (HP1a). The ability for well-ordered nucleosome arrays and HP1a to independently form biomolecular condensates suggests that the emergent material properties of C-Het compartments may contribute to its functions such as force-buffering, dosage-dependent gene silencing, and selective permeability. Using an in vitro reconstitution system we directly assess the contributions of H3K9me3 and HP1a on the biophysical properties of C-Het. In the presence of HP1a, H3K9me3 (Me-) and unmodified (U-) chromatin form co-condensates composed of distinct, immiscible domains. These chromatin domains form spontaneously and are reversible. Independently of HP1a, H3K9me3 modifications are sufficient to increase linker-DNA length within chromatin arrays and slow chromatin condensate growth. HP1a increases the liquidity of chromatin condensates while dramatically differentiating the viscoelastic properties of Me- chromatin versus U-chromatin. Mutating key residues in HP1a show that HP1a interactions with itself and chromatin determine the relative interfacial tension between chromatin compartments, however the formation of condensates is driven by the underlying chromatin. These direct measurements map the energetic landscape that determines C-Het compartmentalization, demonstrating that nuclear compartmentalization is a spontaneous and energetically favorable process in which HP1a plays a critical role in establishing a hierarchy of affinities between H3K9me3-chromatin and unmodified-chromatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.