2024
DOI: 10.3389/fncom.2024.1348138
|View full text |Cite
|
Sign up to set email alerts
|

The connectivity degree controls the difficulty in reservoir design of random boolean networks

Emmanuel Calvet,
Bertrand Reulet,
Jean Rouat

Abstract: Reservoir Computing (RC) is a paradigm in artificial intelligence where a recurrent neural network (RNN) is used to process temporal data, leveraging the inherent dynamical properties of the reservoir to perform complex computations. In the realm of RC, the excitatory-inhibitory balance b has been shown to be pivotal for driving the dynamics and performance of Echo State Networks (ESN) and, more recently, Random Boolean Network (RBN). However, the relationship between b and other parameters of the network is s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 49 publications
0
0
0
Order By: Relevance