In each variant of the $$\lambda $$
λ
-calculus, factorization and normalization are two key properties that show how results are computed. Instead of proving factorization/normalization for the call-by-name (CbN) and call-by-value (CbV) variants separately, we prove them only once, for the bang calculus (an extension of the $$\lambda $$
λ
-calculus inspired by linear logic and subsuming CbN and CbV), and then we transfer the result via translations, obtaining factorization/normalization for CbN and CbV.The approach is robust: it still holds when extending the calculi with operators and extra rules to model some additional computational features.