Besides inheriting the properties of classical Bézier curves of degreen, the correspondingλ-Bézier curves have a good performance in adjusting their shapes by changing shape control parameter. In this paper, we derive an approximation algorithm for multidegree reduction ofλ-Bézier curves in theL2-norm. By analysing the properties ofλ-Bézier curves of degreen, a method which can deal with approximatingλ-Bézier curve of degreen+1byλ-Bézier curve of degreem (m≤n)is presented. Then, in unrestricted andC0,C1constraint conditions, the new control points of approximatingλ-Bézier curve can be obtained by solving linear equations, which can minimize the least square error between the approximating curves and the original ones. Finally, several numerical examples of degree reduction are given and the errors are computed in three conditions. The results indicate that the proposed method is effective and easy to implement.