The Q weak experiment, which completed running in May of 2012 at Jefferson Laboratory, has measured the parity-violating asymmetry in elastic electron-proton scattering at four-momentum transfer Q 2 =0.025 (GeV/c) 2 in order to provide the first direct measurement of the proton's weak charge, Q p w. The Standard Model makes firm predictions for the weak charge; deviations from the predicted value would provide strong evidence of new physics beyond the Standard Model. Using an 89% polarized electron beam at 145 µA scattering from a 34.4 cm long liquid hydrogen target, scattered electrons were detected using an array of eight fused-silica detectors placed symmetric about the beam axis. The parity-violating asymmetry was then measured by reversing the helicity of the incoming electrons and measuring the normalized difference in rate seen in the detectors. The low Q 2 enables a theoretically clean measurement; the higher order hadronic corrections are constrained using previous parity-violating electron scattering world data. The experimental method will be discussed, with recent results constituting 4% of our total data and projections of our proposed uncertainties on the full data set.