In peripheral blood, native low-density lipoprotein (LDL) is a major carrier of acetylhydrolase, the enzyme that hydrolyzes the sn-2 acetate of PAF-acether, converting it to lyso PAF-acether. By controlling the level of PAF-acether, the acetylhydrolase may regulate the biologic effects of this potent inflammatory and thrombotic mediator. The biologic oxidation of LDL appears to underlie its atherogenicity. We report here that oxidative modification of LDL led to progressive loss of associated acetylhydrolase activity. Reductions of approximately 90% and 40% of acetylhydrolase activity occurred respectively in LDL oxidized for 24 hours by copper ions (2.5 /xmol/L) in phosphate-buffered saline and in LDL incubated with human monocyte-like THP, cells in Ham's F-10 medium. Acetylhydrolase activity decreased as a function of the degree of LDL oxidation and was correlated with an increase in net negative charge and in the content of thiobarbituric acid-reactive substances (r=-.94 and r=-.88, respectively; Fs.001). The acetylhydrolase of mildly oxidized LDL displayed a similar K m for PAF-acether compared with native