“…Age and gender, both demographic variables, were incorporated in both the univariate as well as in the multivariate linear regression analyses […] Adjustment for potential confounders was performed by incorporating smoking, alcohol, diabetes mellitus, waist circumference, serum creatinine, mean systolic and diastolic blood pressure, microalbuminuria and dyslipidaemia into these models. To avoid collinearity, waist circumference was used instead of waist-to-hip ratio or body mass index and condensed measures such as diabetes and dyslipidaemia were used, as defined earlier' [48].…”