GLUT1-catalyzed equilibrative sugar transport across the mammalian blood-brain barrier is stimulated during acute and chronic metabolic stress; however, the mechanism of acute transport regulation is unknown. We have examined acute sugar transport regulation in the murine brain microvasculature endothelial cell line bEnd.3. Acute cellular metabolic stress was induced by glucose depletion, by potassium cyanide, or by carbonyl cyanide p-trifluoromethoxyphenylhydrazone, which reduce or deplete intracellular ATP within 15 min. This results in a 1.7-7-fold increase in V max for zero-trans 3-Omethylglucose uptake (sugar uptake into sugar-free cells) and a 3-10-fold increase in V max for equilibrium exchange transport (intracellular [sugar] ؍ extracellular [sugar]). GLUT1, GLUT8, and GLUT9 mRNAs are detected in bEnd.3 cells where GLUT1 mRNA levels are 33-fold greater than levels of GLUT8 or GLUT9 mRNA. Neither GLUT1 mRNA nor total protein levels are affected by acute metabolic stress. Cell surface biotinylation reveals that plasma membrane GLUT1 levels are increased 2-3-fold by metabolic depletion, although cell surface Na ؉ ,K ؉ -ATPase levels remain unaffected by ATP depletion. Treatment with the AMP-activated kinase agonist, AICAR, increases V max for net 3-O-methylglucose uptake by 2-fold. Glucose depletion and treatment with potassium cyanide, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and AICAR also increase AMP-dependent kinase phosphorylation in bEnd.3 cells. These results suggest that metabolic stress rapidly stimulates blood-brain barrier endothelial cell sugar transport by acute upregulation of plasma membrane GLUT1 levels, possibly involving AMP-activated kinase activity.The cells of the mammalian brain do not contain large stores of glycogen. It is therefore essential that glucose uptake by the brain exceeds glucose utilization to maintain proper brain function. To enter the brain, serum glucose must cross the bloodbrain barrier, an epithelium comprising endothelial cells connected by tight junctions that prevent paracellular diffusion of glucose and other nutrients. Thus, glucose transport into the brain requires trans-endothelial cell transport. This process is catalyzed by the glucose transport protein GLUT1, which is expressed at both luminal and abluminal membranes of the endothelium (1-5).Endothelial cells of the blood-brain barrier (bEND) 2 differ from those of the peripheral circulatory system (pEND) in several important ways. 1) bEND cells contain 2-5-fold more mitochondria than pEND cells (6). 2) Brain capillary walls (comprising bEND cells) are 40% thinner than capillary walls of the peripheral circulation (7). 3) pEND cells present significantly fewer tight junctions than bEND cells (8). 4) bEND cell tight junction complexes result in polarized cell surface protein expression that is less marked or absent in pEND cells (8). The resulting bEND cell architecture may give rise to behaviors that differ from those of pEND cells but that resemble those of other metabolically active cells a...