Biogenic amines regulate the proximate mechanisms underlying most behavior, including those that contribute to the overall success of complex societies. For honey bees, one crucial set of behaviors contributing to the welfare of a colony is involved with nest thermoregulation. Worker honeybees cool the colony by performing a fanning behavior, the expression of which is largely influenced by response thresholds modulated by the social environment. Here, we examined how changes in biogenic amines affect this group-performed thermoregulatory fanning behavior in honeybees. Concentrations of two biogenic amines, octopamine and tyramine, are significantly lower in active fanners than in non-fanners, but there is no difference in dopamine and serotonin concentrations. Direct feeding of octopamine and tyramine induced a decrease in fanning responses, but only when both amines were included in the treatment. This is the first evidence that fanning behavior is influenced by these two biogenic amines, and this result is consistent with the typical role of these neurotransmitters in regulating locomotor activity in other insects. Individual variation in amine expression also provides a mechanistic link that helps to explain how this group behavior might be coordinated within a colony.